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Abstract
For combining results from independent experiments, it is essential that information about the precision of the estimates of treatment 
effects is available. In publications of horticultural experiments, the results of multiple comparisons tests are often reported without 
suffi cient information about the precision of the experiments. Based on limited information of the precision of an experiment such as 
treatments with the same letter are not signifi cantly different, we develop a method for extracting a possible range of the precision of 
the experiment which can then be used for meta-analysis. The procedure is demonstrated using a real data example where alternatives 
to methyl bromide are studied in pre-plant soil fumigation. We also provide an R program which computes the possible range of the 
precision.
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Introduction
Meta-analysis (MA) has become a common and widely accepted 
tool in different spheres of sciences including horticulture for 
combining tests of signifi cance as well as methods for comparing 
differences between treatments. Olkin and Shaw (1995) presented 
methods for the latter, the standardized difference of two normal 
means is the effect size of interest and  they also presented the 
statistical meta-analysis in the fi xed effects model, that is, they 
assumed homogeneous effect sizes in all the experiments eligible 
for meta-analysis. A major obstacle to conducting meta-analysis is 
the non-availability of appropriate experimental results. As Olkin 
and Shaw (1995) said “The minimum information required for 
quantitative research synthesis includes means, sample sizes, and 
either standard errors or standard deviations.” 

Shaw and Larson (1999) conducted a meta-analysis of strawberry 
yield response to preplant soil fumigation with combinations of 
methyl bromide-cloropicrin and several alternative systems. They 
followed the lines of Olkin and Shaw (1995) and an inclusion 
criterion was that means, sample sizes, and either standard errors 
or standard deviations of the treatments had to be reported in the 
published articles. Since the published results of four studies, 
basically eligible for that meta-analysis, lacked these necessary 
parameters for inclusion, these four studies were omitted. 

The quality of reporting results in the published articles determines 
the quality of the meta-analysis. Unfortunately, Olkin and Shaw’s 
summation about the minimum information required for meta-
analysis is still often ignored by presenting results of horticultural 
experiments in publications nowadays. The lack of information 
about the precisions of the estimated means in most published 
articles was a major obstacle for the meta-analysis of Porter et 
al. (2006) on validating the yield performance of alternatives 
to methyl bromide for preplant fumigation. To circumvent the 
problem of missing within-experiment precision, Porter et al. 

(2006) simply assumed that the between-experiment variability is 
so large compared to within-experiment variability that the latter 
one can be ignored in the analysis. Obviously, this assumption 
is a very critical one and gives all the different experiments the 
same weight in the meta-analysis. 

But sometimes the results of multiple testing procedures for 
comparing the treatment means are reported using the presentation 
that groups of means with the same letter are not signifi cantly 
different. For instance, Student-Newman-Keuls’ or Duncan’s 
multiple range test are applied in the analysis of horticultural 
experiments. In this paper we present a method to demonstrate 
how to extract information on the within-experiment precision 
when only the results of a multiple range test are reported besides 
the estimated means of the treatments. 

The paper is organized as follows: In Section 2 we briefl y 
summarize the basic ideas of multiple range tests. In Section 
3 we present the extraction method using a simulated data set. 
Section 4 contains the results of the extraction method using the 
reported results from two published articles. Since the sample 
sizes (number of observations or replicates) are often not available 
from the published articles, we present a meta-analytical approach 
in Section 5 using the ratio of means as effect size of interest. In 
Section 6, we give some concluding remarks and show how to 
extract the precision when simultaneous test procedures like Fisher 
LSD, Scheffe, or Tukey test were used in the statistical analysis 
of the horticultural experiments. In the Appendix, an R code is 
given to extract the precision from experiments when the results 
of Duncan’s multiple range test or Fisher LSD are known. 

Multiple Range Tests
Let Yij, i=1, …, r, j=1, …, n, be r independent samples of n 
independently, normally distributed random variables with a common 
variance σ2 and expectations E(Yij) = μi, i=1,…r, j=1, ..., n. 
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Following Miller (1981), the basic credo of multiple range tests 
is: the difference between any two means in a set of r means 
is signifi cant provided that the range of each and every subset 
which contains the given means is signifi cant according to an 
αp-level studentized range test where p is the number of means 
in the subset concerned. 

Let S2 be the error mean sum of squares from one-way analysis of 
variance and assume S2 is a multiple of a χ2-random variate with 
r(n-1) degrees of freedom. The αp-level studentized range test is 
then conducted by comparing the range (divided by S n/ ) of the p 
means involved with the critical value  of the studentized 
range distribution. 

In Student-Newman-Keuls multiple range test, the αp-levels are 
chosen as 
                                                                                     (1)

whereas Duncan’s multiple range test uses, see Miller (1981), 

                                                                                       (2)

Given a subset of p means, if ( )
max

pY  denotes the largest mean in 
this subset and ( )

min
pY  the smallest one, the corresponding null 

hypothesis is then rejected at level αp when 

                                                                                            (3)

Extracting method using a simulated data set
Let us consider a simulated data set with fi ve treatments each 
with ten replications. The standard deviation is σ = 10 and we 
choose the following true means: μ1 = μ2 = 510 and  μ3 = μ4 = 
μ5 = 490.

Then, starting with the global null hypothesis, that is, p = 5, the 
following hypotheses are sequentially tested: 

 

In case, for instance, the null hypothesis H3,1
0  cannot be rejected at 

level α3, the hypotheses H2,1
0  and H2,2

0  are also not rejected without 
further testing. 

We used the function RAND(’NORMAL’) in SAS 9.1.3 and the 
ROUND function to obtain the data given in Table 1. 

Using SAS PROC GLM, we obtain an error mean square 
of S2 = 85.5244. For Student-Newman-Keuls (SNK) and 
Duncan’s multiple range test, we get the same grouping, see 
Table 2. The grouping in Table 2 means that treatments with 
the same letter are not signifi cantly different. Thus we can 
conclude that we cannot reject  and 
Consequently, we also accept  and  without 

further testing. All the other null hypotheses are rejected. 
Table 2. Grouping for Student-Newman-Keuls (SNK) and Duncan’s 
multiple range test

Grouping Mean Treatment  
A 512.2 1  
A 511.4 2  
B 492.2 5  
B 490.7 4  
B 483.9 3  

Now, let us assume that only the results from Table 2 are available. 
The question is: can we extract any information about the within-
experiment precision, that is,  S n/ , from this table? Note that 
it holds in the above example 

Recall that we reject the null hypothesis at level αp if 
                                                                                                 
                       (4)

that is, if 

             (5)

or if 

                                                                                           (6)

Conversely, we do not reject the null hypothesis at level αp if 

                                              (7)

that is, if 

                                         (8)

or if 

                                                   (9)

It is obvious from (5) and (8) that for each subset of p means the 
critical range is identical, namely 

 

Furthermore, if a hypothesis is rejected at level αp, then we know 
from (6) that the standard error  S n/  is at most 
 

that is, each rejected hypothesis gives an information about an 
upper bound of the standard error. Calculating the upper bounds 
from all rejected hypotheses and taking the minimum of all 
possible upper bounds, we obtain a sharp upper bound of the 
within-experiment standard error. To facilitate the computation, 
it is suffi cient to consider only the rejected hypothesis with the 
smallest range of means for subsets of magnitude p, as this range 
provides the smallest upper bound for the within-experiment 
standard error. 
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Table 1. Simulated data set for fi ve treatments
Treatment Observations  
1 506 509 502 514 504 513 514 538 506 516  
2 501 513 518 505 524 498 516 512 512 515  
3 479 488 482 491 487 479 479 504 482 468  
4 489 485 490 498 500 487 496 479 501 482  
5 473 496 495 498 498 482 501 491 482 507  
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Conversely, if a hypothesis is not rejected at level αp, then we 
know from (8) that the standard error  is at least 

 

that is, each non-rejected hypothesis gives an information about a 
lower bound of the standard error. Calculating the lower bounds 
from all non-rejected hypotheses and taking the maximum of 
all possible lower bounds, we obtain a sharp lower bound of the 
within-experiment standard error. To facilitate the computation, 
it is again suffi cient to consider only the non-rejected hypothesis 
with the largest range of means for subsets of magnitude p, as this 
range provides the largest lower bound for the within-experiment 
standard error. 
Let us now apply this method to the results from Table 2. The critical 
values of Student-Newman-Keuls multiple range test are 
q5,45,.05=4.0184, q4,45,.05=3.7727, q3,45,.05=3.4275 and q2,45,.05=2.8484 
and the critical values of Duncan’s multiple range test are 
q5,45,.1855=3.1617, q4,45,.1426=3.0919, q3,45,.0975=2.9954 and q2,45,.05=2.8484

In our example only the hypotheses  and  
were tested and not rejected. Consequently, we can extract the 
following possible lower bounds: 

 

For the determination of the upper bound, we consider, for each 
p, the smallest observed range of the rejected null hypotheses 
and calculate the bounds using the critical values of both tests. 
This results in 

 

The resulting range for possible values of the standard error is 
[2.4216,5.6989] using Student-Newman-Keuls multiple range 
test and  [2.7709,6.6768] using Duncan’s test. 

Note that for p > 2, Student-Newman-Keuls multiple range test is 

more informative for the upper bound of the standard error than 
Duncan’s multiple range test.

In the above calculation we have used the information that the 
number of replications is ten for each treatment. Sometimes, 
this information is not available from the published articles and, 
thus, no information about the error degrees of freedom can be 
deduced. 

In Table 3, critical values of Student-Newman-Keuls multiple 
range test are presented for p=2(1)10 and several error degrees 
of freedom (ddf). The corresponding critical values of Duncan’s 
multiple range test are given in Table 4. For given p and increasing 
ddf, the critical values decrease but converge to a certain value. 
In case no information on the ddf are available, a possible choice 
would be using the limiting value, that is, Cp, ∞,α  which can be, 
for instance, determined with the SAS function PROBMC [e.g., 
x = PROBMC(’RANGE’, ., 1- alpha , ., p) with alpha = 1-(1-α)p-1 
or alpha = α]. 

Applying the limiting values in the above calculations we obtain 
the following possible lower bounds : 

 

The possible upper bounds are given as 

 

The resulting range for possible values of the standard error is  
[2.5004,5.9177] using Student-Newman-Keuls multiple range 
test, and [2.8440,6.8530] using Duncan’s test. With respect 
to the upper bound, the use of the limiting critical value is a 
conservative choice. 

We have explicitly demonstrated the idea of the extraction 
method in this section, but our example is restricted to the 
situation that the means can be divided into disjunct subgroups 
of non-signifi cant means (or treatments). In practice, however, 
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Table 3. Critical values Cp, ddf, 0.05 of Student-Newman-Keuls multiple range test

ddf Number of means  p    
 2 3 4 5 6 7 8 9 10
10 3.1511 3.8768 4.3266 4.6543 4.9120 5.1242 5.3042 5.4605 5.5984
20 2.9500 3.5779 3.9583 4.2319 4.4452 4.6199 4.7676 4.8954 5.0079
50 2.8405 3.4159 3.7584 4.0020 4.1904 4.3437 4.4727 4.5839 4.6814
100 2.8058 3.3646 3.6950 3.9289 4.1093 4.2557 4.3785 4.4842 4.5768
1000 2.7752 3.3194 3.6393 3.8647 4.0379 4.1781 4.2954 4.3962 4.4843
10000 2.7721 3.3150 3.6338 3.8584 4.0309 4.1704 4.2872 4.3875 4.4751
 ∞ 2.7718 3.3145 3.6332 3.8577 4.0301 4.1696 4.2863 4.3865 4.4741

Table 4. Critical values Cp, ddf, 0.05 of Duncan’s multiple range test

ddf Number of means  p 
 2 3 4 5 6 7 8 9 10
10 3.1511 3.2928 3.3763 3.4297 3.4652 3.4891 3.5052 3.5156 3.5218
20 2.9500 3.0965 3.1896 3.2546 3.3026 3.3392 3.3678 3.3905 3.4086
50 2.8405 2.9876 3.0843 3.1544 3.2082 3.2511 3.2862 3.3155 3.3403
100 2.8058 2.9527 3.0505 3.1217 3.1771 3.2219 3.2590 3.2904 3.3173
1000 2.7752 2.9218 3.0200 3.0925 3.1494 3.1957 3.2345 3.2676 3.2964
10000 2.7721 2.9188 3.0170 3.0896 3.1466 3.1931 3.2320 3.2653 3.2943
∞ 2.7718 2.9184 3.0167 3.0893 3.1463 3.1928 3.2317 3.2651 3.2941
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the subgroups of non-signifi cant means (or treatments) usually 
overlap. In the Appendix a computer program is given written in 
R (R Development Core Team, 2008) which can be used to extract 
the possible range of standard errors in the general scenario of 
overlapping subgroups. 

Application to real data examples
We consider some results from Bartual et al. (2002) for 
demonstrating the extraction method in a real data scenario. 
Bartual et al. (2002) studied alternatives to methyl bromide in 
preplant soil fumigation. Seven treatments were investigated, 
where treatment 1 is a non treated control, treatment 2 is the 
standard methyl bromide treatment, and treatments 3 to 7 are 
alternative treatments. We refer to Bartual et al. (2002) for 
details. 

The published article contains the information that the 
experimental design consisted of two years crop with a complete 
randomized block with three replications in the fi rst year. The 
treatments were repeated on the same plot for a second year but 
with only two replicates. Duncan’s multiple range tests were done 
for statistical comparison among treatments. 

Several outcomes were measured like marketable yield, fi rst 
quality fruit yield, fi rst quality fruit size, and percentage of second 
quality fruit yield. The observed outcomes for marketable yield 
and fi rst quality fruit size along with the results of Duncan’s 
multiple range tests are reproduced in Table 5. 

With seven treatments and three replicates in a completely 
randomized block design, the denominator degrees of freedom 
are ddf = 12 for the fi rst year. Only two replicates in the second 
year provide ddf = 6. 
Table 5. Marketable yield and fi rst quality fruit size in the fi rst and 
second year of planting

Treatment Marketable yield First quality fruit size
First year Second year First year Second year 

1 319  C 392  C 17.6  C 17.3  B  
2 544  A 738  A 19.4  A 19.5  A  
3 513  A 683  AB 19.6  A 20.1  A  
4 562  A 579  AB 18.7  B 18.2  B  
5 554  A 542  BC 18.6  B 18.2  B  
6 427  B 410  C 18.6  B 17.7  B  
7 284  C 193  D 18.4  B 16.1  C  

Applying the extraction method from the previous section, we 
obtain the standard errors of estimated marketable yield in both 
years as [14.7927,27.910] (fi rst year) and [44.3336,47.1219] 
(second year)
Replacing the denominator degrees of freedom by infi nity (∞) 
yields [16.2432,31.0267] (fi rst year) and [54.4815,57.9080] 
(second year)

The interval for the second year is relatively tight, because we 
know that the critical range of two means for p = 3 is between 
159 and 169. 

For the fi rst quality fruit size, the limits of the standard errors are 
[0.0906,0.2272] (fi rst year) and [0.2466,0.3468] (second year)

Replacing the denominator degrees of freedom by infi nity (∞) 
yields [0.0994,0.2525] (fi rst year) and [0.2983,0.4329] (second 
year) 
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Y1- Y2g= S

Since there is one replicate less in the second year, one expects 
that the result of the fi rst year is more precise. This is refl ected 
in the deduced ranges of the standard error. 

Note that we can easily extract the error mean sum of squares 
if the number of replicates (blocks) in a completely randomized 
block design is known. 

A small meta-analysis 
Olkin and Shaw (1995) used the standardized mean difference 
as the effect size for combining differences of treatments from 
several independent experiments. In our scenario, this combination 
method is possible if all the experiments provide the number of 
replicates besides the treatment means and the results from the 
multiple range test. In case the number of replicates (blocks) is 
unknown, we can use the extracted information of the standard 
errors to combine the results of several experiments using the ratio 
of means as the effect size for comparing treatments. Combining 
results using the standardized mean difference or the ratio of 
means will be demonstrated in the next two sections. We will 
consider only the combination of two independent experiments. 
Let  and  be generally two effect size estimates of a common 
effect size, say θ, with estimated variances  and , 
respectively. Then, the combined estimator of θ is given as 

       

with    and    2 1ˆ ˆ1w w= − .

Since the extraction method provides a range of possible values 
of the standard errors, we only will consider point estimates of 
the common effect θ in the present paper. For further statistical 
inference on θ, we refer to the textbooks of Hedges and Olkin 
(1985) and Hartung, Knapp, and Sinha (2008), or to the overview 
of Olkin and Shaw (1995). 

Standardized mean difference 
Recall that the standardized mean difference is defi ned as 

  μ1- μ2δ= σ ,

where μ1 is the expected value in the fi rst group (treatment),  
μ2 the expected value in the second group (treatment), and σ 
the common standard deviation of both groups (treatments). 
An estimator of δ, called Hedges’s g, is given as (Hartung et al. 
(2008))

       ,  

where  is the sample mean in the fi rst group (treatment),  
the sample mean in the second group (treatment), and S the 
pooled standard deviation of both groups (treatments) or 
the root error mean sum of squares in case of more than two 
treatments considered in an experiment. Since g is biased for δ, 
an approximately unbiased estimator of δ is given as (Hartung 
et al. (2008)) 

with N = n1 + n2 and ni, i=1,2, is the number of replicates in the 
ith group (treatment). 

g*= (1-         )g    4N - 9
3



For the variance of g, it holds that (Hartung et al. (2008))

which can be easily estimated by

where,  . 

Let us now consider the estimated marketable yield in the fi rst 
and second year from the real data example of Section 4. We fi rst 
want to determine the effect of the (active) standard treatment 
(No. 2) compared to the control treatment (No. 1). Since the 
ranges of the standard errors are [14.7927,27.9101] in the fi rst 
year and [44.3336,47.1219] in the second year with knowing the 
number of replicates, the ranges for the root error mean sum of 
squares are [25.6217,48.3417] (fi rst year) and [62.6972,66.6404] 
(second year). Consequently, the true observed standardized mean 
differences (Hedges’s g) lies in the range [4.6544,8.7816] (fi rst 
year) and [5.1920,5.5186] (second year).

Applying the bias correction to Hedges’s g, see Hedges and 
Olkin (1985) or Hartung, Knapp, and Sinha (2008), we obtain 
the possible range of observed values for g*  as [3.7235,7.0253] 
(fi rst year) and [2.9669,31535] (second year)

Note that the larger the estimated standardized mean difference 
the larger the estimated variance given a fi xed sample size. The 
estimated variances for Hedges’s g are [5.9247,19.3844] (fi rst 
year) and [225.6405,254.792] (second year)

For the bias corrected estimates g* we obtain the following estimated 
variances [4.0318,12.6460] (fi rst year) and [74.3514,83.871] 
(second year)

Let us combine the results for the marketable yield of the two 
years considering the extreme cases, that is, using the limits of 
the extracted intervals. Combining the results using Hedges’s g, 
we obtain the following range of possible values of the common 
effect size: [4.6682,8.5509]. Using the bias corrected g*’s yields 
the range: [3.6846,6.5180]. 

Ratio of means: Let  be the ratio of two (normal) means 
and  

be the logarithm of ρ. An estimate of ξ is readily given as 

Using the delta method, an estimate of the variance of p can be 
deduced as 

where S2 is the pooled sample variance of both groups (treatments) 
or the error mean sum of squares in case of more than two 
treatments considered in an experiment. Note that for identical 
replications, that is, n1 = n2 = n, the variance estimate reads

and the knowledge of the standard error besides the treatment 
means is suffi cient to calculate this variance estimate. 

Let us combine the results for the fi rst quality fruit size of the 
two years for the ratio of means of treatment 2 and 1 using the 
extracted standard errors with infi nite degrees of freedom, that is, 
assuming that the number of replicates is unknown. Recall that 

the extracted standard errors are [0.0994,0.2525] (fi rst year) and 
[0.2983,0.4389] (second year)

Since the effect size here depends only on means, we obtain, in 
contrast to the standardized mean difference, exactly one estimate 
of the effect size from each experiment. But we get a range of 
possible values of the estimated variances for estimated effect 
sizes. For the fi rst year of the fi rst quality fruit size, we get 

with

and for the second year 

with

Clearly, the weighted average lies between 0.0974 and 0.1197. 
We obtain the minimum value of all possible weighted averages 
by using the smallest possible value of  and the largest 
possible value of  . Conversely, the maximum value of all 
possible weighted averages is given by using the largest possible 
value of   and the smallest possible value of  . 
This leads to the following range of possible estimates of the 
common effect size: [0.0985,0.1067].

Backtransforming the results to the original scale we obtain the 
range of estimates of ρ as 

[exp(0.0985), exp(0.1067)]=[1.1035,1.1126]

Concluding Remarks
In this paper we have demonstrated how information about the 
within-experiment variability can be extracted when several 
treatments are compared and only the treatment means and the 
results of a multiple range test, either Student-Newman-Keuls or 
Duncan, are reported. Based on the results of the multiple range 
test we can deduce a lower and an upper bound of possible values 
of the root error mean sum of squares. 

The extracted within-experiment variability can be used in meta-
analysis, when the results of several independent experiments 
should be combined. Possible effect sizes are the standardized 
mean difference and the ratio of means. For using the standardized 
mean difference, the number of replicates has to be additionally 
known to determine the common variance estimate or the error 
mean sum of squares. Moreover, we can only calculate a range of 
possible effect size estimates leading also to a possible range of 
variance estimates. Fortunately, there is a one-to-one relationship 
between effect size estimate and variance estimate. Using the 
ratio of means, we always get one estimate of the effect size per 
experiment but a range of possible variance estimates. 

The extraction method described in this paper is a little bit 
elaborate as the critical ranges of the multiple range tests vary 
with the number of means. Since Tukey’s and Scheffe’s multiple 
comparisons or Fisher’s LSD tests are simultaneous comparisons 
for all treatments and consequently have only one critical range, 
the interval of the standard error can be easily determined using 
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the largest range of two means which do not lead to rejection of 
the null hypothesis and the smallest range of two means which 
lead to a rejection of the null hypothesis. 

To demonstrate the less elaborate extraction method for the 
simultaneous multiple comparison methods, let us consider 
Fisher’s LSD test. Let  and , i ≠ j, be two sample means. Then 
Fisher’s LSD test rejects the null hypothesis of equal means if 

 
and tv, α/2 is the upper critical value of tv .     
If LSD is explicitly given, then it holds 

 Since the error degrees of freedom ν are unknown, we approximate 
the standard error by 

If LSD is not explicitly given but only the information non-
signifi cant then a lower bound of the standard error is 

which, when ν is unknown, can again be approximated by 

If  LSD is not explicitly given but it is known which differences 
of means are signifi cant and which ones are not, then we proceed 
as follows. Consider the largest range of two means which do not 
lead to rejection of the null hypothesis, say , i ≠ j, and the 
smallest range of two means which lead to a rejection of the null 
hypothesis, say  , l ≠ k. Then we have 

 
Consequently, 

 and we can approximate the sought-after interval by 
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Appendix: Computer code in R

Extracting the Standard Error from Multiple Range Test 

Description: multi is used to extract the standard error from Duncan’s 
Multiple Range Test or Fisher’s LSD Test. 
Idea: For one study, we compare every possible pair of treatments to 
fi nd out if they have at least one letter in common. If this happens, we 
do not reject the null hypothesis for that pair of treatments, thus enabling 
us to get a lower bound for the standard error. On the other hand, if they 
have no letter in common, we get an upper bound. 
Usage: multi(y.mean, y.mrt, method, method=c(“Duncan”, “Fisher”), 
alpha=.05)  
Arguments: 
y.mean: a vector of mean values reported in the study. 
y.mrt: a vector of statistical comparison results reported in the 
study. 
method: method used to report comparison results in the study, either 
Duncan’s Multiple Range Test or Fisher’s LSD Test. For Fisher’s Test, 
we only consider the situation that neither LSD nor “not signifi cant” is 
reported. 
alpha: level for the reported statistical comparison results, default 
is .05 
Details:   
# Function for comparing two strings  
# if they have at least one letter in common return “L”, else return “U” 
charcomp <- function(x, y) {
 nsep <- nchar(x) + nchar(y)  
     # summing up number of letters in x, and number of letters in y 
 xy <- c( strsplit(x,split=character(0))[[1]], strsplit(y,split=character(0
))[[1]])      
     # combine x and y into a new vector, letters by letters  
     # for example, x = “abc”, y=”a”, then xy = c(“a”,”b”,”c”,”a”) 
 nbind <- length(unique(xy))  
     # report number of unique elements in xy  
     # for previous example, will be “a”, “b”, “c”, then return 3. 
 if(nsep==nbind) {return(“U”)} 
     # the two values are equal means x and y have no letter in common 
 else {return(“L”)}   
}
# Function for extracting the standard error  
# from Duncan’s Multiple Range Test or Fisher’s LSD Test 
multi <- function(y.mean, y.mrt, method=c(“Duncan”,”Fisher”), 
alpha=.05) {
 n <- length(y.mean) 
n.pair <- choose(n, 2)  # number of possible pairs 
c.pair <- combn(n, 2)  # all possible combinations of n choose 2 
 bound <- decision <- rep(NA, n.pair) 
 if(method==”Duncan”) {
 y.rank <- 13- rank(y.mean, ties.method=”min”) 
 for (i in 1:n.pair) {
   j <- c.pair[1, i] 
   k <- c.pair[2, i] 
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   mean.diff <- abs(y.mean[j]- y.mean[k]) 
   rank.diff <- abs(y.rank[j]- y.rank[k]) 
   alpha.p <- 1- (1- alpha)^rank.diff
   bound[i] <- mean.diff / qtukey(1-alpha.p, rank.diff+1, 100000)
   decision[i] <- charcomp(y.mrt[j], y.mrt[k])
} }
 if(method==”Fisher”) {
for (i in 1:n.pair) {
   j <- c.pair[1, i] 
   k <- c.pair[2, i] 
   mean.diff <- abs(y.mean[j]- y.mean[k]) 
   bound[i] <- mean.diff /(qnorm(1-alpha / 2) * sqrt(2))

   decision[i] <- charcomp(y.mrt[j], y.mrt[k])
} }
 c(max(bound[decision==”L”], na.rm=T), min(bound[decision==”U”], 
na.rm=T))
}
Value: The lower bound and upper bound of the standard error will be 
returned. 
Example:  
yield <- c(392, 738, 683, 579, 542, 410, 193) 
dmrt <- c(“c”, “a”, “ab”, “ab”, “bc”, “c”, “d”) 
multi(yield, dmrt, method=“Duncan“, alpha=0.05) 
[1] 54.48149 57.90800  
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